Floer homology and closed geodesics of hyperbolic three-manifolds
Francesco Lin
Abstract: Floer homology and hyperbolic geometry are fundamental tools in the study of three-dimensional topology. Despite this, it remains an outstanding problem to understand whether there is any relationship between them. I will discuss some results in this direction that use as stepping stone the spectral geometry of coexact 1-forms. This is joint work with M. Lipnowski.
algebraic geometrydifferential geometrygeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.
The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.
| Organizers: | Jonny Evans*, Ailsa Keating, Yanki Lekili* |
| *contact for this listing |
